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Dirac's large numbers hypothesis (LNH) is incorporated into kinetic theory, 
statistical physics, and thermodynamics using the self-consistent formalism of 
units covariance. The ingeodesic equation and matter creation introduce modifi- 
cations of the most fundamental laws of the subject. Liouville's theorem no 
longer holds, the Boltzmann equation is modified, as is the H-theorem. This 
affects the second law of thermodynamics in that for canonical LNH neither 
reversible nor adiabatic processes are possible (as expected). A significant result 
is that the collision terms have the same form as in standard physics. This means 
that equilibrium distribution functions are identical to those of standard physics, 
as required for self-consistency with the precepts of LNH. The net effect of LNH 
is as though all matter in our Universe were weakly coupled to a large heat bath. 

1. I N T R O D U C T I O N  

This paper is the third in a series seeking to explore the consequences 
for physics of developing a viable, self-consistent, physical theory incorpo- 
rating Dirac's (1937) large numbers hypothesis (LNH). In Papers I and II 
(Adams, 1982, 1983) LNH was presented, the guiding principle of units 
covariance was developed, a scalar "field" q0(x) mediating all LNH phe- 
nomena was introduced, and the theory of electromagnetic radiation was 
explored. In this paper I develop kinetic theory, statistical physics, and 
thermodynamics incorporating LNH in the units covariant formalism 
(Adams, 1982). 

Anticipated applications of this LNH formalism include stellar evolu- 
tion and the evolution of the cosmic "soup" in isotropic, homogeneous 
cosmological models. While such applications do not involve kinetic theory 
per se, in order to sensibly formulate statistical physics and thermodynamics 
in a self-consistent way I start with kinetic theory. This is the natural 
approach since the single-particle equations of motion for both matter 
particles and photons are known from Papers I and II. 

I Current address: MS 264/664, Jet Propulsion Laboratory, Pasadena, California 91109. 
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The modifications of kinetic theory are brought about by the ingeo- 
desic equation and by matter creation. One finds that the phase space 
volume element is no longer preserved (Liouville's theorem fails). Conse- 
quently Boltzmann's equation is modified. A significant result is that the 
collision terms have the same form as in standard physics. This means that 
equilibrium distribution functions are identical to those of standard physics. 
As required for self-consistency with the precepts of LNH, the effect of ep is 
to change the dynamics of statistical ensembles, not their kinematics. 
Finally, the H-theorem is modified, which significantly affects the second 
law of thermodynamics. The net effect of LNH is as though all matter in 
our Universe were weakly coupled to a large heat bath. 

Having incorporated LNH into kinetic theory in the units covariant 
formalism one can obtain statistical physics and thermodynamics in the 
standard manner (Stewart, 1971). As expected, matter creation and the 
in-geodesic equation combine to indicate that for canonical LNH (Paper II) 
neither reversible processes nor adiabatic processes exist. Those processes 
which minimize the entropy change are referred to as ideal. 

For convenience and ease of presentation the work here is applicable 
only to strictly atomic systems, i.e., those systems which have constant mass 
and replicate in A units. Hence classical systems, i.e., those systems having 
constant mass in G units but which do not replicate, such as star clusters, 
will satisfy similar but not identical equations. The difference arises in the 
normalizing parameters entering the analysis. For atomic systems these are 
Planck's constant and Boltzmann's constant. The difference amounts to 
deciding in what units (G units or A units) these parameters are constant. 
For classical systems they must be constant in G units while for atomic 
systems they must be constant in A units. 

Finally, several simple applications are presented to illustrate use of the 
formalism and to verify self-consistency with previously established results. 
The reader unfamiliar with sign conventions, notation, or the units co- 
variant formalism is referred to Paper I for details. 

2. KINETIC THEORY 3 

2.1. Phase Space. The world line of a single particle is determined by 
equations of motion in the form 

dx ,~ 
dX = P "  (la)  

dp" = F,~(x, p )  (lb) 
d~ 

3Stewart (1971); Ehlers (1971). 
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where, for example, for a free particle satisfying 

p~',~,p~' = - p"p~(ln N ) , .  (2) 

r " ( x ,  p)  = - p~'pXF;x - p"p~'(ln U)a,  - ( 2 -  g)p'~p~'(lnfl),~, 

+ P~'Pxg,~xg'~~ fl ),o (3) 

with ~r the particle replication rate. Notice that (2) and (3) are equally valid 
for photons. The path parameter X is uniquely determined up to an additive 
constant by the requirement that p~ be the four-momentum (Adams, 1983), 

then d r =  regardless of whether p~p. > 0 or p~p~ = O. If p~p~ > 0 
( p ~ p j / 2  dX is the particle proper time. 

The equations of motion (1) define a vector field 

L -  p --~x~ + F " ( x , p )  op,~ (4) 

on the eight-dimensional phase space Rp of the system. L is called the 
Liouville operator and since L - d / d X ,  L ( f )  determines the variation o f f  
along a test particle path for any f.  The phase flow generated by L is the set 
of integral curves of (1). 

Define 

f ~ ( x , p ) -  g~,,,(x)p~'p " 

Use of (4) and (3) shows that 

L(/~) =/~[(g  - 1)1nil - l n  N] , . p~  

or L (m 0) = 0, where 

(5) 

(6) 

N = N,,,o(~O/~po) g - '  (8) 

so appropriate normalization turns (7) into the familiar (Adams, 1982) 

m = m A (fl/ep) g - '  (9) 

For quantum matter particles the number of particles varies as (Adams, 
1982) 

/~ = m 0 ( f l g - ' / N  ) (7) 
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A seven-dimensional hypersurface R. ,  of Rp is defined by m 0 = const and is 
generated by all those orbits in phase space belonging to m o. R m is the 
phase space for particles of mass m 0. Since L ( m o ) =  0 the vector L is 
tangent to R,.. 

From now on I deal with particles of a given mass m o only. Hence one 
deals with the seven-dimensional R m as the phase space of the system. A 
coordinate-independent volume element on R. ,  is 

~ . r l A , . t r  

I 
r I =-- -~ . ( - -  g ) l /2eua .h  dx~ 'dx '~dx~  x ~ d4x  

~r - 2 H( p~ )8( - mZ ) (  - g ) '/ze~,,,ox dp~' dp" dp~ dpX ~ d3pE 

(9a)  

(9b) 

(9c) 

where %~oX is the alternating symbol and the arrows denote the form taken 
in a locally orthonormal coordinate system. 

The final volume element needed is the volume element for six-dimen- 
sional hypersurfaces in R m. Since L is tangent to R,,, this is obtained by 
contracting ~2 with L to get 

co - L . f ~  = p%,~ A ~r (10) 

w h e r e % i s  a three-dimensional hypersurface element defined by 

1 
o . = - ~ . ( - g ) t / 2 e ~ . o x d x ~ d x ~  x (11) 

If the hypersurface of (10) is contained in the local, instantaneous rest space 
of an observer at x ~ with four-velocity u ~, and if the momentum hyper- 
surface of (10) is small and contains p~, then from (9c) 

co = p ' ~ u , ~ d V d 3 p / E  = d3x  d3p  (12) 

which is the ordinary differential phase space volume. 
In standard physics dco= 0 (Liouville's theorem) but this is no longer 

true in this theory containing LNH. In fact from Paper II one has 

dco = - 3d ln  N A co + (3g  - 6 ) d l n  fl A co 

= -- 3 [ ln  N + ( 2 -  g)ln fl].~p~f~ (13)  

so that co is not invariant with respect to the phase flow except for classical 
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particles (N=cons t )  in G units (fl = 1). This point is crucial for what 
follows, especially since one expects to apply (13) in A units (fl = cp). 

2.2. Boltzmann Equation. Let OA be the six-dimensional boundary of 
the seven-dimensional region A c R,,. Let H(x, p) be an arbitrary function 
on R,,. Then 

= fA(L(H)-3[lnN+(2-g)lnfl].,~p"H)~2 (14) 

where the first term of (14) follows as in standard physics and the last term 
comes from (13). 

Now introduce the distribution function f(x, p) on R m. Then the 
average net number of "collisions" in A is equal to the average number of 
particles intersecting OA as 

N(OA)= fa,4f~= fA(L(f)-3[lnN+(2-g)lnfl],,~p~f)s (15) 

by (14). If the phase space density of "collisions" is denoted C ( f )  then 
clearly 

L ( f ) - 3 [ l n  N + ( 2 -  g)lnfl],~p~f = ~ ( f )  (16) 

However, the term "collisions" includes not only physical collisions of 
particles which scatter them in to and out of A as in standard physics, but 
also net particle creation. This is clear from (15) since N(OA) is the net flux 
of particles through aA. Even if no physical collisions scatter particles in to 
or out of A, particle creation would mean that more particles leave A than 
enter A. Hence 

C ( f )  = (ln N),~p~f + C(f)  (17) 

where now C ( f )  is the phase space density of particle collisions (no quotes, 
physical collisions). Therefore, one finds 

L( f )  = [41nN +(6-3g)lnfl],~,p'~f + C(f)  (18) 

which is consistent with the collision-free result found in Paper II. 
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Equation (18) describes the evolution of the distribution function 
f ( x , p )  provided one knows the functional C ( f )  from an analysis of 
collision mechanisms. If the duration of each collision is very small com- 
pared to the time scales of/3 and N then the collisions can be assumed to 
occur instantaneously, i.e., the interparticle forces "causing" collisions can 
be approximated as hard core and the collisions are approximated as 
occurring at a point. In this case the collision functional C ( f )  will have 
exactly the same form as in standard physics: 

G ( L )  =�89 E f f f  (~,~g, bgr A ~r~ A ~r d 
b,c ,d  

+ E ff(g,~g, bg~--g~,gbg,~)Wab--~Crb A ~rr 
b,c 

+" E f f ( L g ,  gc- go~.d.c)Wo~:, ^ ~ 
b,c 

(19a) 

g~ - h 3 f ~ / r ~ ,  ~,~ =- 1 + g~ (19b) 

with f ,  the distribution function of species a, h Planck's constant, G the spin 
degeneracy of particles of species a, the upper sign in (19b) is for Bose 
particles and the lower sign for Fermi particles, and W is a measure of the 
probability of occurrence of the particular collision. Notice that Wab ~ ,a = 

Wca ~ ~b and that the sums in (19) extend over all species present. Equations 
(18) and (19) constitute the LNH generalization of Boltzmann's equation. 

2.3. Moments of the Distribution Function, Entropy, and the H-Theo-  
rem. Various moments of the distribution function f i x ,  p )  can be defined 
as  

,: - f pV~ (20) 

T "~ - fp"pV~ (21) 

etc. where n ~ is the number density flux vector and T ~" is the energy tensor. 
If V is an arbitrary spacetime region with boundary OV which is contained 
in the seven-dimensional region A with six-dimensional boundary OA one 
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has 

= fA(L(f)- -3[ln  N + ( 2 -  g)lnfl],~p'~f)~ 

= fv ~ A f[(lnN).~p~f + C ( f ) ]  ~r (22) 

from (20), (10), (14), and (18). Since V is arbitrary 

n":~= f[(lnN)..p~f + C ( / ) ]  ~r 

= (ln N),,,n '~ + fc(l)~ (23) 

using (20) and the fact that N is independent of p~ (at least to lowest order) 
in the LNH formalism. From (20) and (21) 

1-I (n~) = - 4 ,  YI(T~'") = - g - 4  (24) 

using H ( p  ~) = - g so 

n"; .  = n " , .  -- n " , .  = (In N),,,n '~ + fc(f)~ (25) 

Of course, (25) is just what one expects since one finds the standard physics 
result modified by the creation of new particles. 

Let V, OV, A, and OA be as above and let ~u(x) be an arbitrary 
smoothly differentiable covariant vector field. Then 

ff( .r.O):o = fA(L( ~,p~'f ) - 3 [ l n N  + ( 2 -  g)lnfl].,~p"~,p~'f }a 

= f• A f [  +(lnN)op~ + - 

(26) 

using linearity of the Liouville operator together with the same steps as led 
to (22). Since V is arbitrary 

5,:.T"" + 5,r"":.=fL(5,pV)fTr + ( l n N ) , , ~ , T  "u + 5,fc(f)p,Tr (27) 
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using (21). But from (4) 

L(  ~,p ~' ) = ~,.,~p"p~' + ~,,F"( x, p)  (28) 

so since (~ is arbitrary 

T"~;~ = (In N ).,~T ~" - f p~'p"(hi N ),j1r -(2- g) f p'~p"(ln ,a ).~,fTr 

+ g""(lnB),ofpXpxf~ + f c ( f ) p " ~  

= - ( 2 -  g)(lnfl).oT~'~ + g~'~ + fc(f)p'Tr (29) 

using (3) and (21). But (29) can be written as 

T ' ,  = f c ( f  (29b) 

using (24). This is the units covariant generalization of the standard physics 
equation (semicolon-to-star rule). Notice that (29) does not contain qo 
explicitly since T "" contains no explicit reference to particles. On the other 
hand, since n" is explicitly particle density flux (25) does contain q~ ex- 
plicitly. 

Finally, one introduces the entropy flux vector 

s ~ = - k --r f (  g ln  g -T- ~ ln  8) p~r 
h 3 

(30) 

where g, g, r, h and the sign convention are the same as in (19), and where k 
is Boltzmann's constant. Note that k has units of energy and hence power 
1 - g  (see the discussion of k in Section 4 below). Quantum particles are 
expected to replicate freely only in the absence of quantum degeneracy 
effects, so take the dilute gas limit (g << 1) in (30) to get 

s " = - k ~ f ( g l n g - g ) p " ~  

= k f f p " ~ - k f f ( l n g ) p " ~  

= kn ~ - k f f l n (h3 f / r )  p%r (31) 
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Now one is in a position to derive the units covariant version of the 
H-theorem. First define 

a~=- f fln( h3f/r l p% (32/ 

s ~ 1 7 6  o) (33) 

The proof follows that leading to (22): 

f : a ~ ; ~  = ~ A f l n (  h 3 f / r  )o~ 

= fA ( L [ f l n ( h 3 f / r ) ]  - 3[ln N + (2 - g)ln fl ] ,,~p'~f l n (h3 f / r ) )  f~ 

(34) 

SO 

( s ~/  k ) ; ~ = n ~ - a ~ = ( ln N ) .~s ~/ k 

- [ 4 1 n N  + ( 6 - 3 g ) l n e p ] . , n ~ -  f c ( f ) l n ( h 3 f / r ) T r  (37) 

Since the collision integral in (37) has precisely the same form as in standard 
theory, its contribution must be non-negative for precisely the same reasons 
as in standard theory [note that l n (h3 f / r )  < 0]. Further since 

n ( s ~  = - 4  (38) 

(sO/k );,~ = (sO~k)...  = (sO~k),.o 

>1 ( l n N ) . ~ s ~ / k  - [ 4 1 n N + ( 6 - 3 g ) l n e p ] . ~ n  ~ (39) 

so linearity of L, (18), (4), (9a), and 

h = h A (fl/q)) g -z  (35) 

together with the fact that V is arbitrary lead to 

a ~;~ = (ln N),~a  ~ + 4(In N).~n ~ + ( 6 -  3g)(ln rp),.n ~ 

+ f c ( f ) ~  + f c ( f ) l n ( h 3 f / r ) ~  (36) 
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which is the units covariant version of the H-theorem. This is the basis for 
the second law of thermodynamics. Notice that in standard physics the 
right-hand side of (39) is zero. 

3. STATISTICAL PHYSICS 

In statistical physics it is customary to deal with the phenomena of 
kinetic theory in a situation which closely approximates physical equi- 
librium. However, in this theory complete thermodynamic equilibrium can 
never exist. This is because in any sample of fluid there are always 
replicating particles. Also, the energy of every sample of fluid is always 
changing, regardless of how well insulated the fluid may be. The cosmic 
effect cp can never be turned off or screened out just as gravity can never be 
turned off or screened out. 

However, when the relevant time scales are examined one can discuss 
sensibly an effective equilibrium. If the time scale for a small segment of 
fluid to reach thermal equilibrium is much smaller than the time scale t o for 
~-generated effects to occur, then the fluid can be considered to pass slowly 
through a sequence of equilibrium states characterized by a total number of 
particles N ( t )  and a temperature T( t ) .  Such an effective equilibrium is 
characterized by the vanishing of the collision integrals in (25), (29), and 
(37). Consequently, wherever in standard physics the Bose-Einstein, 
Fermi-Dirac,  or Maxwell-Boltzmann distribution functions are valid, so 
too are they valid in this LNH formalism. The only difference is that now 
both the temperature and the chemical potential are time dependent (q~ 
dependent). In the remainder of these papers the term "equilibrium" should 
be understood to mean equilibrium in this quasistatic sense. 

Of course, just as in standard physics one must not set C ( f )  = 0 in the 
Boltzmann equation (18). This would lead one to conclude 

f = fO( f l /~O)  6 - 3 g ( N / N o ) 4  (40) 

which is valid only if the particles do not collide at all (Vlasov equation), cf. 
Paper II. Instead one asserts that the net result of collisions is to thermalize 
the new particles and energy generated through % This is equivalent to the 
case of detailed balancing in standard physics. The end result is that when 
local thermodynamic effective equilibrium holds one has 

f = r/h  (41) 
e p~'~ - "  =t- 1 
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just as in standard physics. Here a ( x )  and "yx(x) reduce to # / k T  and 
u x / k T ,  respectively, where u x is the mean fluid velocity. 

In the statistical physics limit one has (Stewart, 1971) 

rl  a = n u  a 

T~"~ = (O + P ) u  ~'u'~ - Pg~'~' + q~'u" + q'~u ~' 

s"  = snu '~ + q ' ~ / T  - I.t~.'~/T 

(42) 

(43) 

(44) 

where n is the number density of particles, u ~ is the mean fluid velocity, p is 
the energy density, p the isotropic kinetic pressure, s the entropy per 
particle, T the kinetic temperature,/z the chemical potential, q~ the heat flux 
relative to u ~, and ~ the diffusion flux of particles relative to u ~. Omitted 
from (43) are terms involving viscosity. For an observer traveling with the 
mean fluid velocity u ~ equations (42), (43), (44), (20), (21), and (31) give 

n = f f d 3 p  (45) 

o = f E f d 3 p  (46) 

OE 3 p=l/3 f  fd3p=l/3 fp.- pfa p (47) 

s n = k n - k f f l n ( h 3 f / r ) d 3 p  (48) 

where E = u,~p ~' is the energy per particle in the fluid rest flame. 
In standard physics it is customary at this point to take the dilute fluid 

limit to obtain the Maxwell-Boltzmann distribution function. In this ver- 
sion of LNH the dilute fluid limit is mandatory for any system of fermions. 
This is simply because LNH theory at the level of quantum physics has not 
yet been created. The units covariant formalism developed in Paper I 
assumes that quanta are free to "replicate." This is possible only if they are 
not phase space limited, or in quantum language, only for nondegenerate 
fermion systems. Of course bosons are not restricted this way, which is why 
the treatment of photon replication in Paper II is expected to be valid. 

With f given by 

f = r e~,/kt e _ e /k t  (49) 
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in the dilute fluid limit, one finds 

p = nkT= nm/x  (50) 

p = nm[3K3(x)+ K,(X)]/nK2(x) (51) 

X - m / k T  (52) 

where K,,(X ) is the Bessel function of the second kind with limits 

(~r ) ' /2e_X[l+(4n2_l) /8x+O(x_2)  ] K , , ( x )  --, 

K,,(X)--,(n--1)!2"-IX-"[I+O(x)] a s x ~ 0  

as X--, oo 

(53a) 

(53b) 

Use of (25) and (29) in a comoving frame with vanishing collision integrals 
allows one to relate X to N, fl, and % This is done in Section 5.3 below. 

4. THERMODYNAMICS 

In this section I formulate the basic laws of units covariant thermody- 
namics including LNH. Start by discussing Boltzmann's constant k. This 
constant originates in the kinetic theory definition of entropy flux (30). 
Consider (30) without k. Then by (33) s~/k has the same power as n ~ = nu ~ 
so by (44) and (30) the "entropy" s /k  is equal to the logarithm of the 
statistical weight of the system and has power zero. Tiffs is as expected for 
the "information content" of a system. 

The reciprocal of the rate of change of the "entropy" of a system with 
respect to the energy of the system is the absolute thermodynamic tempera- 
ture 0 of the system. Since "entropy" has power zero, 0 must have the same 
power as energy (mass) 

I-I(O)=l-g (54) 

In practice it is usual to measure temperature in thermometer units called 
degrees. If T is the temperature in thermometer units then 0 = kT. This is 
the origin of Boltzmann's constant. 

Thermometer units have power zero. This is most easily seen by noting 
that thermometer units are always defined in terms of pure numbers, e.g., 

1 K -- (VB - V, : ) / lOOV,:  (55)  
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where V B is the volume of a given amount of mercury at the same 
temperature as boiling water, and V F is the volume of the same amount of 
mercury at the same temperature as freezing water. Hence 

r t ( r )  = 0 (56) 

H ( k )  = l - g  (57) 

k relates the average energy of a fluid particle to the thermometer 
temperature 7'. Since the fluid particles are atomic particles k is strictly an 
atomic constant. Hence 

k = k A ( f l / ep )  g - ' ,  k A = 1.38 • 10 - 1 6  e r g s / K  (58) 

To remove k from thermodynamic relations it is customary to introduce k 
into the definition of entropy as in (30). This entropy (no quotes) now has 
the same power as k 

FI ( s )  = 1 - g (59) 

Since thermodynamic relations are usually written using differentials or 
exterior derivatives d one needs to introduce the concept of units covariant 
exterior derivative. The usual exterior derivative is defined by 

df  =- f, odx  o (60) 

where f is a scalar field. In a sense this definition is an accident due to the 
fact that the partial derivative of a scalar field is coordinate covariant so 
(60) is coordinate covariant as written. Since coordinate covariance is the 
only dynamical universal gauge invariance in classical physics, (60) is an 
adequate definition. 

However, this theory utilizes an additional universal gauge invariance, 
viz., units covariance. Hence all derivative operators must be both coordi- 
nate covariant and units covariant. The units covariant gradient operator 
was defined in Paper I. Here the units covariant exterior derivative is 
defined by 

d , f  = f , ,~dx  '~ (61) 

which is units covariant since coordinates have power zero. Of course (61) is 
normalized so that in G units (/3 = 1) d ,  = d. It will be convenient to 
introduce a second units covariant derivative d ,  normalized so that in A 
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units (j8 = qv) d H --- d 

Adams 

d , , f  ~ f , ,< ,dx  '~ (62) 

As mentioned at the end of Paper I this bar derivative is formed in exactly 
the same way as the star derivative except that fl/~p replaces fl everywhere. 
Thus 

f ,,a = f,~, +FI(f  ) f  [in(/3/cp)],a (63) 

if f is a scalar field. This means that if h is an arbitrary differentiable 
function then 

just as 

[h (/~/r ,, ~ = 0 (64) 

[h ( /3)] ,~  = 0 (65) 

Now one can obtain the second law of thermodynamics in this units 
covariant formalism containing LNH. In a local comoving frame with no 
heat flux or particle diffusion flux (44) gives 

s ~ = snu"  (66) 

Substitution into (39) and use of (25), (57), and (59) give 

( s / k ) ; ~ u  ~ >t - [41n U + ( 6 -  3g)lncp].~u ~ (67) 

or since s / k  has power zero and k ~ ~ = 0 

s ,,~u ~ >i - k [41n U + (6 - 3g)ln qo] .~u ~ (68) 

In terms of exterior derivative notation (68) becomes 

d, , s  >1 - kd, ,  [41n N + ( 6 -  3g)lnq~] (69) 

Either of equations (68) or (69) constitutes the LNH units covariant form of 
the second law of thermodynamics. 

In standard physics the first law of thermodynamics is written as 

do = Y '~[(Ts  A + IXA) dnA + TnAdSA] (70) 
A 
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together with 

P + P = ]~_,(TSA + I-tA)nA (71) 
A 

where the sum is over all the particle species present. In the units covariant 
formulation (71) will be unchanged since it is already units covariant. 
However, one expects the units covariant generalization of (70) to consist of 
replacing d by d .  or d , .  The correct choice is dictated by the observation 
that for atomic systems thermodynamics is based on kinetic theory which in 
turn is based on atoms. Hence (70) is valid in A units (13 = ~0) so 

d,,p= s [(Ts. + . . , )d , , . . ,  + T.,Ad.,sA] 
A 

(72) 

together with 

o , , o .  ~  s [(rs,, + ~A)"A,,~ + T". , s~ , ,o ]"  ~ 
A 

(73) 

constitute the LNH units covariant form of the first law of thermodynamics. 
For a one-component gas (72) and (73) take the more familiar forms 

d , , p = ( ~ - - ~ - ) d , n +  Tnd,,s  

 lOUO o o = n,laU + Tns,au 

(74) 

(75) 

after use of (71). 
In terms of the macroscopic quantities 

U - pV, S =- Ns, N - nV (76) 

where V is the system volume, equations (69), (71), and (72) become 

d , i S > ~ S d l l l n N - 4 N k d . l n N - 3 ( 2 - g ) N k d . l n q 9  (77) 

U + p V =  TS + Y~I~ANA (78) 
A 

d,,U= T d , , S -  pd , ,V  + ~,I~Adl, NA (79) 
A 

respectively. 
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Since the second law is not of the form d , S > l  0, a problem with 
terminology arises. Write 

N - ep g - 1 - x ( g + 2 ) / 4  (80) 

where x = 0 for matter  and x = 1 for photons. Then (77) becomes 

d . S > l  S d l n N -  N k ( l -  x)(1 + 2 / g )  d l n t  (81) 

where the LNH approximation cp g - t  has been used. For g = + 1 the 
entropy of a system can actually decrease! For the canonical L N H  with 
g = - I  

d , S > ~  S d l n N  + N k ( 1 - x )  d l n t  > 0 (82) 

Since d ,  S > 0 there is no such thing as adiabatic change. Also, no transfor- 
mation is reversible. I will refer to the minimum entropy change case as an 
ideal process. Then for any ideal process 

d, , s  = - k d,, [41n N + (6 - 3g)ln cp] (83) 

d,, S = Sd , ,  In N - N k  d,, [41n N + (6 - 3g)ln r (84) 

There is no physical means possible whereby d ,  S can be reduced below (84) 
since that would involve screening the effects of % which is not possible. 

5. A P P L I C A T I O N S  

5.1. Specific Heats. As a trivial illustration of some of the differences 
between standard thermodynamics and this units covariant form with L N H  
I discuss the specific heats of an ideal gas. In the standard definition of 
specific heat one considers a thermodynamic system in equilibrium at 
temperature T and adds a small amount of heat dQ to the system while 
keeping all other external parameters constant. Normally the rate at which 
heat is added to the system is not important.  However, in this units 
covariant theory with L N H  rates are very relevant to any given problem. 
The heat dQ must be added to the system in such a manner  that the system 
can equilibrate in a time very short compared with t o, the time scale of 
variation of q~. Of course, since t o is roughly equal to the age of the Universe 
there is no problem for this example. However, since the effects of cp can 
never be shielded, no thermodynamic problem, not even ideal ones, can be 
phrased so that the system takes an arbitrarily long time to equilibrate. 
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When this limitation is taken into 
effectively constant. 

From the first law (79) one has 

account then N, fl, and q~ are all 

TdS = dQ = (g  - 1)TSdln(fl /cp) 

+ dU + ( 1 - g) Udln (fl/~p) + p dV + 3p Vdln (fl/ep) - ~_, izA N A din N 
A 

(85) 
using (59) with 

I - I (N)  = 0, I-I(V) = 3 (86) 

where one assumes that one is not adding particles to the system so 

dU A = N A dln U (87) 

Now 

dU = ( ~T  ) v.tdT + (-~V ) T, tdV + Udln N + ( g - 1 ) U d l n  ( fl/ep ) (88) 

where the d l n N  term exists since U is proportional to the number  of 
particles present, and the dln fl/rp term exists because U is an atomic 
quantity (normalized to fl = tp) and has power 1 - g. 

Equation (88) illustrates an important source of error in this kind of 
analysis. From (85) one obtains a dln(fl /qo) term from d,U. In (88) one 
finds the same term with opposite sign. While it may appear that the term is 
being counted twice, this is not so. The d ,  exterior derivative treats fl/ep as 
a constant. Hence it must appear in (88) with opposite sign to that in (85) so 
that it does not appear in the end result, as required by the d ,  operator. 

The analysis now proceeds as in standard physics. For a perfect gas 

From (85) and (88) 

au) =0 (89) 
- ' ~  T,t 

- a t e  
(90) 

where v is the number  of moles and c v is the specific heat per mole, so (88) 
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becomes 

dU = vc v d T  + Udln  N + ( g - 1) Udln  (/3/ep) 

From (85) and (91) 

= V C v +  p (  O__~)p., 

and use of (50) gives 

cp = c  v + R 

just as in standard physics (as expected). One immediately defines 

r =~ Cp/C V 

to be the ratio of specific heats. 

Adams 

(91) 

(92) 

(93) 

(94) 

from (78). Dividing by p V and using (50) gives 

d l n T + ( F - 1 ) d l n V + 3 ( F - 1 ) d l n ( f l N e p ~ - g ) = o  (96b) 

with (94). For F constant (96b) integrates as 

T V  r - ' ( fl Nep' - s ) 3~ r - ,) = const (97) 

For nonrelativistic perfect fluids F = 5 /3  and N - 9~ g-  i so 

TNR = T O ( V o / V )2/3(/30/fl )2 (98) 

(96a) 

5.2. Ideal Expansion or Compression. For an ideal change one has 

T d S  = ( g  - I ) T S d l n  ( f l / ep )+  T S d l n  N - p V d  [41n N + ( 6 -  3g)ln cp] 

(95) 

from (84) and (50). Equating (85) and (95) and using (91) gives 

3 p V d l n ( f l N e p ' - g )  = ( T S  + ~ , I . t A N A - U -  p V )  dln N =  0 v c v d T  + p d V  + 
\ A I 
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while for relativistic perfect matter fluids F = 4 / 3  and N - cpg- t so 

TR = To(Vo/V) ' /3(Bo/B) (99) 

For a gas of matter particles enclosed in a box of fixed volume 

TNR = To(flo/fl) 2 (100) 

TR = To( flo/fl ) (101) 

This is completely consistent with the kinetic theory interpretation of tempera- 
ture as being proportional to the mean kinetic energy of the gas. In Paper I it 
was shown that the velocity of a nonrelativistic particle satisfies vfl = const, 
which leads to (100), while a relativistic particle has 7/3 = const, which leads 
to (101) (7 - 2 = 1 - v2). 

Finally, for a box of fixed volume with perfectly reflecting walls 
containing electromagnetic radiation (photons) one has from (97) 

TT = Zyo ( )( q)/ o )(g- 2)/4 ~. Zyo ( floep / f l% )( t / to )O - 2/g)/4 

(102) 

where N v - q03tg - 2)/4 was chosen so as to preserve a free-photon distribution 
function as shown in Paper II  (cf. Section 5.4 below). Hence the radiation 
temperature in the box either increases or decreases as 1 / g < l / 2  or 
1/g > 1/2, respectively, in A units. 

5.3. Matter  Temperature in Cosmology. I calculate the cosmological 
matter  temperature both from thermodynamics and from statistical physics. 
The Universe is taken as isotropic and homogeneous with scale factor R(t).  
If  one puts a small comoving box in the cosmic soup then no net heat flux 
crosses the box boundaries. Thus the matter inside the box is undergoing an 
ideal expansion so (97) is applicable. From (97) 

TNR = To( Roflo/Rfl  ) 2 (103a) 

TR = To( Roflo/Rfl  ) (103b) 

where V -  R 3. 
One can also use the technique mentioned at the end of Section 3 based 

on statistical physics. In a comoving frame TU~,~ = 0 [equation (29)] 
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becomes 

'p + 3 ~ _ + ( 1 _ g ) ~ + 3  p (R/3) p p Rfl 0 (104) 

from (43) with q" = 0 and the cosmological line element 

= dr: - t ) h , j a x '  dxJ  (105)  

while (23) with (42) becomes 

n R = N = (g - 1 (106) r 

As usual the dot denotes time derivative�9 From (50) and (5 I) 

P _  l [  4K2(x) ] (107) 
0 X 3K3(x)+K,(x) 

while (51) gives 

t5 i, ~ ~ _~t [ 4K2(x) ] ( 1 0 8 ) 3 K 3 ( x ) + K , ( x )  p = n + ( g - 1 )  + ( l - g )  + in 

since n is for atomic masses. Use of (104), (106), and (107) in (108) gives 

~In[3K3(x)+K'(x)]+3[3K3 (x)+K,(x)]-~t l n (Rf l )=0  (109) 

where 

4K2(x) --, IX~3 as X ---, 0 (110) 
3K3(x)+KI(x) ~ 1 -3 /2X as X ---' c~ 

Thus (108) becomes 

(lnx-I)'+[ln(Rfl)]'=O as X ---, 0 ( I l ia )  

~(X-')'+3X-'[ln(Rfl)]'=O a s x ~ o o  ( l l l b )  

which have (103) as solutions. Note that (109) is exact for any temperature 
so the assumption of constant F used in deriving (97) is not necessary. 
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Finally I show that starting from the first and second laws of thermo- 
dynamics one can derive the relation 

( p u " ) , , , =  - pu'~,,~ (112) 

for the ideal expansion of a perfect fluid obtained in Paper I. This checks 
the self-consistency of the formulation. Using a comoving frame together 
with (68), (71), (73), (50), and (25) to get 

- p [41n N + ( 6 -  3g)ln~p].~u ~ (113) 

(pu~) ..~ = - p u ' ~ , , , , + p ( l n N ) . , ~ u " - 3 p [ l n N + ( 2 - g ) l n e p ] . , , u  '~ (I14) 

which upon expanding the derivatives can be written as 

( p u " ) , , , = - p u ' ~ , , , + ( p - 3 p ) [ l n ( N q J ' - g ) ] . , , u ' ~ = - p u ' ~ , , ,  (115) 

since for matter N - cpg- I while for photons p = 3p. 

5.4. Photon Temperature in Cosmology. If one can treat photons as a 
perfect fluid then the photon temperature for an ideal expansion follows 
(97) with F = 4/3 .  However, one cannot assume this a priori. The proper 
approach is to return to kinetic theory. As shown in Paper II the distribu- 
tion function for a free expansion of photons from an initial black body 
distribution follows the law 

qO / 4 a + 6 -  3g __ I 

hv hov o 
- - -  ( l16b) 

k T  koT o 

where A and a are constants with N v -~pa. Consequently, a black-body 
distribution (or any other distribution) is preserved in time in A units if and 
only if 

a = ~ ( g - 2 )  (117) 

The observed 2.7 K cosmic black-body radiation and its interpretation as 
relict radiation of a free-photon expansion from very far in the past 
indicates that (117) is required. 
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If (117) holds then the black-body distribution is preserved and (116b) 
defines the way the radiation temperature changes with time. This follows 
since the argument of the exponential in (116a) determines the location of 
the peak of the Planck curve. This peak in turn defines the temperature of 
the black body through Wien's law. However, in Paper I I I  showed directly 
from the photon propagation equation that the frequency of a photon varies 
along its path like 

vRcf+2 - g = const (118) 

Combining (116b), (117), and (118) gives 

r ( R0 0/( g , .  
k Jk o 

(119) 

in perfect agreement with (97) with F = 4/3.  

6. DISCUSSION 

This paper has presented a detailed discussion of the thermodynamics 
of atomic systems in the units covariant formalism including LNH. In order 
to properly develop thermodynamics one starts with kinetic theory, uses the 
in-geodesic equation of motion, and inserts particle creation rates where 
necessary. From the form of the collision integrals one concludes that 
equilibrium distributions have exactly the same form as in standard physics. 
This is vital. If at any point in this development r affects the kinematics of a 
system then the dynamical significance of and difference between A units 
and G units is lost. cp can cause transitions among states but must not affect 
the states themselves. 

Equilibrium considerations lead one to statistical physics. Here LNH is 
automatically incorporated in a self-consistent manner due to the develop- 
ment from kinetic theory. Taking the thermodynamic limit allows the units 
covariant formulation of the first and second laws of thermodynamics 
containing LNH. It is found that for canonical LNH no process can be 
either adiabatic or reversible. The term "ideal" is used for those thermody- 
namic processes for which dS is minimal. The net effect of r on physical 
systems is as though all matter in our Universe is weakly coupled to a large 
energy source or sink (depending on the value of g). 

A few simple applications of the theory were presented to illustrate its 
use and self-consistency. Cosmological matter and radiation temperatures 
were calculated and the kinetic theory results were shown to be in agree- 
ment with results based on the perfect fluid statistical physics approach. 
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It is to be emphasized that only the dilute fluid approximation should 
be valid. If matter is going to replicate then it must not be phase space 
limited. This means that none of this formulation is expected to be valid for 
degenerate fermion systems. The reason is simply that L N H  has not yet 
been incorporated at the quantum level so there is no way to determine 
what happens when the Pauli principle dominates the dynamics. Hence this 
formulation of L N H  is expected to be valid for internal processes in 
sufficiently high-temperature systems but is not expected to be valid for 
such "weird"  cosmologically insignificant systems as planets, moons, or 
rocks. 

Some systems for which L N H  may well be significant are galaxy cluster 
dynamics, galaxy dynamics, and globular cluster dynamics. Although these 
are classical systems (stars do not replicate), the elements of each system 
(stars, galaxies) do follow in-geodesics and not geodesics. For canonical 
L N H  this means that energy is being pumped into the system by r Over 
cosmological time scales (10 t~ yr) the amount of energy "produced"  by qD 
can be comparable to the total initial energy. Of course, since G is 
decreasing and M increasing the effects are not easy to predict. However, 
notice that it is not correct to simply scale phenomena in terms of G(t) and 
M(t). One must also include the effects of the in-geodesic equation. 

To a lesser extent this is also true of stellar evolution calculations. It is 
common to predict effects of L N H  on stellar evolution by simple scaling 
with G(t) and M(t) (Canuto and Lodenquai, 1977; Canuto et al., 1977; 
Maeder, 1977; VandenBerg, 1977). To date the subtle effects of energy 
injection due to particles following in-geodesics have been ignored. Com- 
pared with nuclear energy sources the energy generation rate due to in- 
geodesic motion is miniscule. What  is significant is that this energy is 
generated throughout the body of the star instead of being localized near 
the stellar core. It is precisely this effect which the formalism developed in 
this paper is designed to accommodate.  
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